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Received 8 February 1983 

Abstract. We discuss the associativity properties of a deformed algebra of phase-space 
functions, the deformation taken to finite order. We assess our findings in view of a 
recently proposed quantisation scheme which admits non-associative algebras of operators. 
We draw a number of conclusions pertaining to the applicability of the deformed algebra 
for quantum mechanical descriptions. 

1. Introduction 

In a recent paper (Ktorides and Papaloucas 1982) we have investigated the derivation 
properties of a certain deformed Poisson algebra and related our findings to Joseph’s 
quantisation prescription (Joseph 1970). The deformed Poisson product has been 
introduced, for quantisation purposes, by Bayen et a1 (1978) and in its most general 
form reads 

where f ,  g are complex-valued polynomial functions on phase space and the C k  are 
certain two-cochains (Gote and Grosshans 1978) in the space of polynomial functions. 
We have been particularly interested in the infinitesimal form of (1.1) which pertains 
directly to the Poisson product { f ,  g}. It reads 

Our result was that Joseph’s quantisation requirement can be met, for product (1.2), 
if the two-cochain C,(f ,  g) obeys a certain condition (Ktorides and Papaloucas 1982). 

In  the present paper we shall investigate a specific realisation of the deformation 
product (1.1) which has been proposed by Bayen ef a1 (1978). We shall be particularly 
interested in its associative properties. 

In 9: 2 we investigate these properties for the case where the deformation is of first 
order. We relate our findings to the recently proposed quantisation scheme by Okubo 
(1981). In S; 3 we study deformations of finite order greater than one and in S; 4 we 
formulate our conclusions. 

@ 1983 The Institute of Physics 3485 
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2. A specific realisation of the deformation product and related associativity 
considerations 

A particular realisation of (1.2) can be achieved by deforming the customary (associa- 
tive) multiplication between f and g, as follows: 

fg + (f ' g)A =fg + A  If, g}. (2.1) 

With respect to the above product, let us introduce the associator (f, g, h )  

It can be seen, from this definition, that product (2.1) is associative only if its associator 
vanishes. One finds 

(2.3) 

Given that associativity is a revered property in quantum mechainical formulations 
the above result calls for closer inspection. 

One way to proceed at this point is to note that the associator is of second order 
in A ,  while the product deformation, as given by (2.1), is of first order. Referring to 
(1. l ) ,  one could consider the possibility of extending the deformation prescription 
given by (2.1) to higher orders in A ,  say A k ,  in such a way that the order of the 
non-vanishing associator be pushed up further (to, at least, order A '+I) .  It is conceiv- 
able that in the limit k + 00, a suitably constructed deformation will have a vanishing 
associator. Bayen et a1 (1978) have been able to construct such a product, the so-called 
star product. It reads 

(f, g, h ) A  = A '{U, h ) ,  gI* 

In the above expression P'(f, g) denotes the bidifferential operator 

P'(f, g )  = nl'l' nZrfrV,, I , f v , ,  ,,g (2.5) 

which can be viewed as an rth-order Poisson differential operator. For example, for 
the familiar flat phase space of classical mechanics one has 

P ( f ,  g )  = (af/aS')w,,ag/as', 

where si  = (q l ,  . . . , q", p ' ,  . . . , p " )  are the phase-space coordinates and wii is the 
familiar symplectic metric 

Note that, to order A ', the star product (2.4) reduces to the deformation (2.1). Finally 
it should be pointed out that (2.4) becomes the Moyal product (Moyal1949) for A = tih. 

The restoration of associativity is certainly welcome. On the other hand, product 
(2.4) could be criticised on the following grounds. The majority of quantum mechanical 
calculations are done via approximation methods. For example, in semiclassical and/or 
WKB approximation methods, calculations are performed to finite order in h. 
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Only systems with integrable classical counterparts (such as the harmonic oscillator, 
the Kepler two-body problem, the sine-Gordon model etc) posses a complete quantum 
mechanical solution. But finite order in h is, at least from the viewpoint of the Moyal 
product, equivalent to saying finite order in  A which, in turn, inevitably brings 
non-associativity back into the picture. Even if the non-associative terms are pushed 
to the next order in A ,  the fact remains that non-associativity is lurking in the 
background and its cumulative effects may not vanish. Moreover, when the phase- 
space manifold has curvature and/or torsion the non-associative effects could very 
well be of the same order in A as the deformation itself (beginning from order A 2  if 
there is torsion and order A if there is torsion and curvature) (Bayen et al 1978). 

The above arguments bring us to a second alternative, namely to allow for the 
possibility of finite-order calculations and face non-associativity directly. The plausibil- 
ity for employing non-associative quantum mechanical algebras has been raised in a 
recent paper by Okubo (1981). This author has distinguished between the wider 
algebra d of quantum mechanical operators and the algebra do of operators corres- 
ponding to observables (Hermitian operators). This distinction arises naturally as 
follows. Let A ,  B E&,,. It does not follow that AB E do, only that $(AB +BA)  E do. 
So the product AB should, in general, be accommodated in the larger algebra d of 
operators. Okubo proceeded to investigate what must be the minimal properties of 
d such that the Heisenberg equation of motion 

dA/dr = (i/h)[H, A ]  (2.8) 

holds its validity for any observable A E do. This equation implies, in particular, that 
ad(H)  acts as a derivation on d :  

[H, AB] = [H, A]B + A [ H ,  B ] .  (2.9) 

With such a minimal restriction it turns out that d need not be associative, According 
to a theorem proved by Myung (1972) the only requirements placed by (2.9) on d 
are that 

(i) .d be flexible, which means 

(A ,  B, C )  = - (C, B, A )  

where (A ,  B, C )  denotes the associator in d, and 

(2.10) 

(ii) d be Lie admissible, which means 

[ [A ,  Bl, Cl+[[B, Cl, Al+[[C,  AI, BI = 0. (2.11) 

Clearly both properties are automatically guaranteed if the product AB, in d, is 
associative. However, in general, d need not be associative. As long as relations 
(2.10) and (2.11) hold true for its product, d is a legitimate candidate for a quantum 
mechanical operator algebra. Indeed, Okubo has been able to formulate a strong 
quantisation scheme which maps classical phase-space functions into a non-associative 
(but flexible and Lie-admissible) algebra of operators. 

Armed with the above information, let us now test whether the non-associative 
deformed product (2.1) fulfils Okubo’s requirements. From (2.3) it follows that 

(2.12) 

which verifies flexibility. 
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Lie admissibility can also be checked in a straight forward manner. One has to 
calculate 

[[f, g ] ~ ,  h ] ~  = ((f g ) A  ' h ) ~  - (h  ' (f ' ~ ) A ) A  - ( ( g  ' f ) ~  ' h ) ~  ( h  ' ( g  ' ~ ) A ) A .  

One finds 

[[f, g l A ,  h1A =4A2{{f, g } ,  h )  (2.13) 

i.e. the double commutator of the deformed product reduces to a familiar double 
Poisson product. The Jacobi identity is now an immediate consequence of (2.13). 
Explicitly, 

[ [ f , g l A ,  h l A + [ k ?  h l A , f l A + [ [ h , f l A ,  g l A  =4A2({{f, g } ,  h }+{{g ,  h } , f } + { { h , f } ,  g})=o  
(2.14) 

which verifies the Lie admissibility of the deformed product (2.1). This fact has also 
been noted by Okubo in relation to the Kokoris nodal algebra (see Schafer 1966). 

3. Arbitrary finite-order deformations 

Encouraged by the first-order result obtained in 9: 2 we shall now proceed to investigate 
the case when the product deformation is taken to some arbitrary finite-order k. To 
be explicit, we shall consider the product 

The associator (f, g ,  h ) , ~  is not zero, as one might have expected. Indeed, it is given 
by 

and cannot possibly vanish identically if only because of the A 2 k  term. The latter reads 

Now in the expansion of Pk(Pk(f, g ) ,  h )  terms will occur where in a 2kth-order 
derivative off (in p ' s  and 4 ' s )  multiplies a kth-order derivative of g times a kth-order 
derivative of h ;  such terms are not contained in the expansion of P k ( f , P k ( g ,  h ) )  
wherein only k th-order derivatives of f enter. 

We shall now prove that all terms in the double sum ( 3 . 2 )  up to order A k  (i.e. 
s + r s k )  vanish, implying that non-associativity is of order A k + l  or higher. To this 
end, we consider a generalised form of (2.1), as follows: 

The study of the above series to infinite order (k +CO) by Bayen et al (1978) yielded 
the following result. Associativity imposes on the a ,  the restrictions 

ara,- ,  = a,a,-,, s + r S t ,  t = 0 , 1 , 2 , .  . . . (3.4) 
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The above condition can be consistently fulfilled in the case of an infinite-order 
expansion by setting all a, = 1 (leading precisely to the star product (2.4)). To finite 
order, on the other hand, condition (3.4) cannot be consistently fulfilled. Indeed, in 
the finite-order case t runs up to 2k  so that (3.4) places a restriction on 2k coefficients 
a l ,  az, . . . , a 2 k .  But only the first k coefficients a l ,  . . . , ak are available in the original 
expansion (3.3). The latter can be consistently fixed via (3.4), which means that terms 
up to order A k  in the associator can be surely made to vanish (one has to set 
a1 = U Z =  . . . = a k  = 1 as we already did in (3.1)). Terms of order h k + l  and higher, 
on the other hand, are outside the jurisdiction of condition (3.4). Therefore, they do 
not vanish necessarily. In fact, we have already seen that the A 2 k  term in the associator 
certainly does not vanish. We have explicitly checked the case when k = 2 (deformation 
to second order) and have found that the A and A terms in (3.2) do not vanish. 

According to Okubo, the lack of associativity does not, in itself, constitute a reason 
to abandon the finite-order deformation (3.1) as a viable quantum mechanical product. 
Provided that (3.1) is flexible and Lie admissible it can be employed for quantum 
mechanical calculations. 

We shall proceed to examine flexibility and Lie admissibility for the product (3.1) 
as soon as the following two preliminary remarks are out of the way. The first amounts 
to a notational convention. By we shall collectively denote any rth-order derivative 
o f f  in q's  and p ' s .  This notation allows us to write, for example, 

and 

(3.6) 

Of course fc r 'gcr )  in (3.5) is shorthand for a number of terms containing an rth-order 
derivative of f times an rth-order derivative of g with appropriate numerical 
coefficients, according to formula (2.5). Clearly, half of the total number of derivatives 
on f and g will be with respect to q and the other half with respect to p .  Similar 
analysis applies to the terms entering the right-hand side of (3.6). 

The second remark pertains to symmetry properties of the P' operation with 
respect to an exchange of its arguments. It readily follows that 

if r is odd 

P r ( P s ( f ,  g) ,  h )  = ~ ( r ) ~ ( r + s l g ~ r ~ + ~ i r 1 ~ ( I C S - l ) g ( S f l i +  , , , + h ( r ) f ( ~ ) ~ ( r + r l  

P'(f, g )  = -P ' (g , f )  
and 

P'(f, g ) = P ' ( g , f )  if r is even, 

We are now in a position to study flexibility. This property demands that (3.2) should 
coincide with 

Let us check the possibility of a term by term equality between the sums entering (3.2) 
and (3.7). For a term in (3.7) with s even, r even rearrangements can be made freely 
without any sign changes. Explicitly 

P"(h,P'(g,f))-P"P'(h, g ) , f )  =P'(P'(f, g) ,  h)-P"f ,P ' (g ,  h ) ) .  (3.8) 
But the right-hand side of (3.8) matches exactly the corresponding term in (3.2). 
Similarly, for r odd, s odd the double rearrangement will restore the original signs 
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and the corresponding terms in ( 3 . 2 )  and ( 3 . 7 )  match once more. However fors  even, 
r o d d - o r  vice versa-the corresponding terms have exactly opposite signs: 

There are two possible ways that flexibility still holds: either that even-odd terms in 
r and s are absent in the expansion ( 3 . 2 )  and ( 3 . 7 )  or that cancellations occur between 
terms with different values of r and s but a constant value of r +s. 

We shall show that neither of these holds by means of a counterexample. Consider 
the even-odd terms s = k ,  r = k - 1 and s = k - 1, r = k occurring in the expansion 
( 3 . 2 ) .  They read 

A 2 k - 1  

[ P k ( P k - ' ( f ,  g ) ,  h ) - P k i f ,  P k - ' ( g ,  h ) ) + P k - ' ( P k ( f ,  g ) ,  h ) - p k - ' ( f ,  P k ( g ,  h ) ) ] .  

(3.10) 

Clearly, with the above expression we have exhausted all the A ' k - l -  order terms in 
( 3 . 2 ) .  Employing our previously introduced notation, (3 .10 )  reads as 

k !  ( k  - l)! 

A 2 k - 1  [ h  i k i ( f ( k  - l l g  1 2 k  -1) + f ( k  i g  ( 2 k  - 2 )  + . . , + f t 2 k  -1  l g  ( k  - 1  )) 
k ! ( k - l ) !  

(3 .11 )  

Each row contains ( k  + 1) type of terms. Consider the first row. There are ( k  + 1) 
different types of terms in each of which h is differentiated to order k .  These terms 
should be cancelled by terms appearing in the other three rows. Upon a glance on 
the last three rows we find that the type of terms containing h ' k i  appear only once in 
the second row (in the form f (k )g '2k -2 'h 'k ' ) ,  no times in the third row and only once 
in the fourth row (in the form f 'k -1 ig '2k -"h 'k ' ) .  This means that a necessary condition 
for cancellation of the terms in question is that k + 1 = 2,  i.e. k = 1 .  Therefore flexibility 
is possible only for the first-order deformation, an occurrence we have explicitly shown 
in § 2 .  By the way, the above argument also shows that even-odd type terms do not 
vanish individually. For this to have been the case in the example just considered, 
the first two rows would have had to cancel each other. Such an alternative is even 
more restrictive than the previous one. In  particular it would imply k + 1 = 1, i.e. the 
trivial expansion with k = 0. 

Let us now turn to Lie admissibility. To begin with we find 

which means that only the odd terms survive in the expansion. We obtain 

(3 .12 )  
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with k' = k / 2  if k is even and k' = k - if k is odd. Lie admissibility means 

k ,  k '  4 A 2 r - l h Z s + l  = c  c- [p2sf1(P2'+'(f, g) ,  h)+PZS+'(P2"'(g, h ! , f )  
s = O  (2r  + l)! (2s + l)! 

+ p 2 S - l ( P z r C 1 ( h , f ) ,  g)] = 0. (3 .13)  

Consider the highest-order term in the expansion (s = r = k ' ) .  In our comprehensive 
notation it reads 

(2k'cll 1 4 k ' + 2 )  + . . .  +f g ) 4A 4 k ' + 2  [h  ( 2  k ' + 1 1 ( f[4 k ' + 2'g 2 k ' + 1 I 

{ ( 2 k ' +  1)!}2 
( 2 k ' + l )  14k + 2 )  + . . .  + g  h ) 

+ g ( 2 k ' c l ) ( h i 4 k ' + 2 ) f ( 2 k ' t l i  + . . , + h ( Z k ' & : f  '4k  +21)1> 
+f (2k  + l ) ( g i 4 k  + 2 ) h ( 2 k  + 1 )  

(3.14) 

each row containing ( 2 k  + 2 )  type of terms. Searching, as before, for types of terms 
containing h'2k in rows 2 and 3 we find only one such type in each of these rows. 
So cancellation with the first row type of terms would occur only if 2 k ' + 2 = 2 ,  i.e. 
k ' =  0. For k even this means k = 0, for k odd it means k = 1. Once more we have 
discovered that our results of D 2 pertaining to the first-order deformation (2.1) are 
very special to that case. Any deformation to a finite order greater than one has no 
chance of being flexible or Lie admissible. Therefore it cannot fulfil Okubo's require- 
ments for quantum mechanical calculations. On the contrary, to infinite order, Okubo's 
requirements are trivially met since the deformation product becomes associative. 

We summarise our results in this section as follows. The deformation product 
defined by (f, g ) A k  = Z;,"=o (Ar/r!)Pr(f, g) ,  k <a, where P' is the rth-order differential 
Poisson operator given by ( 2 . 5 ) ,  has a non-vanishing associator which is of order A k + l  

or higher. Moreover, for k > 1 it is non-flexible and non-Lie admissible. 

4. Conclusions 

The basic result of our analysis is that Okubo's requirements are fulfilled for the 
deformation product (3.1) only if k = 1 (always restricting ourselves to k finite). We 
would like to discuss the implications of the departure from Okubo's requirements. 
In particular, we would like to know what is the meaning of finite-order calculations 
in the framework of the deformation product under consideration. 

Clearly, any approximate calculation performed to a finite order leaves a remainder 
reflecting the neglected effects. The quality of this remainder may have profound 
consequences with respect to the total solution. For example, consider the case of 
two infinitesimal rotations performed around different axes, say (1  + &Ll)  and (1 +d2). 
For convenience, we take the same (infinitesimal) angle for both rotations. It is 
usually stated in textbooks that the sequence by which two infinitesimal rotations are 
made does not matter. Explicitly 

( 1  +&L1)(1 + E L * )  = 1 + &  ( L ,  +L2) + O(E2), 

(1 +&LZ)(l +ELI) = 1 + E  (L1 +L,)+O(E2),  
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so that 

(1 +&L1)(1 +&L2) - (1 +&L,)(l  +ELI) = 0. 

What has been neglected here is the term E ’ ( L ~ . L - L ~ L ~ ) ,  i.e. the commutator of 
generators L1, Lz .  This ‘neglected’ factor shows up when considering finite rotations; 
the latter do not commute. By a similar token, the neglected terms in our case 
(meaning the terms of order A k + l  or higher) seem to be pathological not because they 
are non-associative but because they do not satisfy Okubo’s requirements (let us call 
them non-Okubo terms for short). This means that finite order, k > 1, calculations 
within the deformation scheme will leave as remainder non-Okubo terms, which do 
not have a precise quantum mechanical meaning. One cannot be certain about the 
cumulative effects of such terms. Our findings establish a posteriori, modulo an a priori 
demand for associativity, the wisdom involved in going to the exponential (star 
product), Within the framework of the star product one is confident that one is not 
leaving behind (i.e. neglecting) effects that are nonsensical to the very theory one is 
applying. 

On the other hand, let us return to the previously raised question: what happens 
if a calculation cannot be carried to infinite order in  h ,  equivalently, when the quantum 
mechanical problem is not exactly solvable? It seems to us that it would be worthwhile 
to search for different realisations of deformation products, within the framework of 
the general definition ( l . l ) ,  which might fulfil Okubo’s requirement to finite order 
and which would coincide with the star product in the infinite-order limit. 

It would be interesting to study restrictions imposed on the Ck(f, g)  by Okubo’s 
requirements and relate such restrictions to the ones imposed on the Ck(f, g)  by 
Joseph’s quantisation prescription. In this way, there may result a consistent realisation 
of the deformation (1.1) which could be suitable for finite-order calculations, 

Another point of interest concerns the characterisation by Bayen er a1 (1978) of 
certain subsets of complex-valued phase-space functions as good observables. The 
latter seem to play a central, as well as special, role with respect to quantisation. 
These good observables could very well constitute the classical counterpart of Okubo’s 
set of quantum mechanical observables do. 

We have already pointed out the significance of the subalgebra of good observables 
(Ktorides and Papaloucas 1982), with respect to Joseph’s (1970) analysis concerning 
the quantisation mapping. Once more, one is led to speculate whether Okubo’s 
framework provides a genuine extension which could accommodate Joseph’s keen 
observations regarding the quantisation problem. Investigations along these lines are 
currently in progress. 
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